[1] Jian, Z., Lu, Y., Qiao, Y., Fang, Y., Xie, X., Yang, D., ... & Li, T. (2023). TSC-VEE: A TrustZone-Based Smart Contract Virtual Execution Environment. IEEE Transactions on Parallel and Distributed Systems.
[2] Li, T., Wang, H., Fang, Y., Jian, Z., Wang, Z., & Xie, X*. (2022, November). Block-gram: Mining Knowledgeable Features for Smart Contract Vulnerability Detection. In International Conference on Smart Computing and Communication (pp. 546-557). Cham: Springer Nature Switzerland.
[3] Jian, Z., Jin, Z., Xie, X., Lu, Y., Li, G., Chen, X., & Baker, T. (2021). Sysnif: A log-based workflow construction method and performance measurement in intelligent IoT system. Measurement, 186, 110175.
[4] Xueshuo, X., Jiming, W., Junyi, Y., Yaozheng, F., Ye, L., Tao, L., & Guiling, W. (2021). AWAP: Adaptive weighted attribute propagation enhanced community detection model for bitcoin de-anonymization. Applied Soft Computing, 109, 107507.
[5] Li, T., Fang, Y., Jian, Z., Xie, X., Lu, Y., & Wang, G. (2021). ATOM: Architectural support and optimization mechanism for smart contract fast update and execution in blockchain-based IoT. IEEE Internet of Things Journal, 9(11), 7959-7971.
[6] Xie, X., Wang, Z., Xiao, X., Lu, Y., Huang, S., & Li, T. (2021). A confidence-guided evaluation for log parsers inner quality. Mobile Networks and Applications, 26, 1638-1649.
[7] Liu, Z., Lu, Y., Xie, X., Fang, Y., Jian, Z., & Li, T. (2021, July). Trusted-dnn: A trustzone-based adaptive isolation strategy for deep neural networks. In ACM Turing Award Celebration Conference-China (ACM TURC 2021) (pp. 67-71).
[8] Fang, Y., Jian, Z., Jin, Z., Xie, X., Lu, Y., & Li, T. (2021). Fast policy interpretation and dynamic conflict resolution for blockchain-based IoT system. Wireless Communications and Mobile Computing, 2021, 1-14.
[9] Xie, X., Jin, Z., Wang, J., Yang, L., Lu, Y., & Li, T. (2020). Confidence guided anomaly detection model for anti-concept drift in dynamic logs. Journal of network and computer applications, 162, 102659.
[10] Xie, X., Fang, Y., Jian, Z., Lu, Y., Li, T., & Wang, G. (2020). Blockchain-driven anomaly detection framework on edge intelligence. CCF Transactions on Networking, 3, 171-192.
[11] Wang, J., Xie, X., Fang, Y., Lu, Y., Li, T., & Wang, G. (2020). Attribute Propagation Enhanced Community Detection Model for Bitcoin De-anonymizing. In Machine Learning for Cyber Security: Third International Conference, ML4CS 2020, Guangzhou, China, October 8–10, 2020, Proceedings, Part I 3 (pp. 607-622). Springer International Publishing.
[12] Xie, X., Jin, Z., Han, Q., Huang, S., & Li, T. (2019). A confidence-guided anomaly detection approach jointly using multiple machine learning algorithms. In Cyberspace Safety and Security: 11th International Symposium, CSS 2019, Guangzhou, China, December 1–3, 2019, Proceedings, Part II 11 (pp. 93-100). Springer International Publishing.